Neurotransmisores implicados en la fisiopatología de la esquizofrenia

Autores/as

Palabras clave:

esquizofrenia, psicoterapia, neurotransmisores, glutamato, dopamina.

Resumen

Introducción: La esquizofrenia es un trastorno psiquiátrico que suele iniciar en la adolescencia o adultez temprana, caracterizándose por alteraciones en la percepción de la realidad y deterioro cognitivo. La investigación farmacológica y de neuroimagen ha identificado a la dopamina como el neurotransmisor principal, dado su elevado nivel cerebral.

Objetivo: describir el papel de los neurotransmisores en la esquizofrenia.

Método: revisión documental con estrategia de búsqueda filtrada en bases de datos científicas. Se emplearon operadores booleanos y palabras clave sobre esquizofrenia, neurotransmisores, dopamina y glutamato. En el periodo de 2010 a 2023.

Resultados: La hipótesis dopaminérgica que vincula la esquizofrenia a un desequilibrio de dopamina es la de mayor consenso, sustentada en que los antipsicóticos reduciéndola mejoran los síntomas. Otros neurotransmisores como glutamato serían relevantes. Se requiere más investigación para esclarecer su papel específico y mecanismos de acción.

Conclusión: La esquizofrenia es un trastorno de alta complejidad, con base biológica, donde la investigación del rol diferenciado de diversos neurotransmisores constituyen áreas clave para avanzar en su comprensión y manejo efectivo.

Palabras clave: esquizofrenia; psicoterapia; neurotransmisores; glutamato; dopamina.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Roxana Elisa Urquiza - Zavaleta, Universidad Privada Cesar Vallejo

Psicóloga Clínica por la Universidad de San Martín de Porres, Magister en Psicología Educativa en la Universidad Nacional de Trujillo. Master en psicobiologia y neurociencia cognitiva de la Universidad Autonoma de Barcelona Especialización en terapia cognitivo conductual y terapia sistemica breve. Docente de la Universidad Cesar Vallejo de Trujillo. Doctora en Psicología de la Universidad Cesar Vallejo. Poseo experiencia como docente de pregrado, y posgrado. Ejerzo la docencia superior universitaria

Citas

1. Chen, Y.. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients. 2021; 13(6), ISSN 2072-6643. Available from: https://doi.org/10.3390/nu13062099
2. Yang, D.. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduction and Targeted Therapy. 2021; 6(1), ISSN 2095-9907. Available from: https://doi.org/10.1038/s41392-020-00435-w
3. Zhu, F.. Metagenome-wide association of gut microbiome features for schizophrenia. Nature Communications. 2020; 11(1), ISSN 2041-1723. Available from: https://doi.org/10.1038/s41467-020-15457-9
4. Zhu, F.. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Molecular Psychiatry. 2020; 25(11):2905-2918, ISSN 1359-4184. Available from: https://doi.org/10.1038/s41380-019-0475-4
5. Kaar, S.J.. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology. 2020; 172, ISSN 0028-3908. Available from: https://doi.org/10.1016/j.neuropharm.2019.107704
6. Needham, B.D.. Gut microbial molecules in behavioural and neurodegenerative conditions. Nature Reviews Neuroscience. 2020; 21(12):717-731, ISSN 1471-003X. Available from: https://doi.org/10.1038/s41583-020-00381-0
7. Socała, K.. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacological Research. 2021; 172, ISSN 1043-6618. Available from: https://doi.org/10.1016/j.phrs.2021.105840
8. Kindler, J.. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Molecular Psychiatry. 2020; 25(11):2860-2872, ISSN 1359-4184. Available from: https://doi.org/10.1038/s41380-019-0401-9
9. Conio, B.. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Molecular Psychiatry. 2020; 25(1):82-93, ISSN 1359-4184. Available from: https://doi.org/10.1038/s41380-019-0406-4
10. Garakani, A.. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. Frontiers in Psychiatry. 2020; 11, ISSN 1664-0640. Available from: https://doi.org/10.3389/fpsyt.2020.595584
11. Misiak, B.. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota?. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2020; 102, ISSN 0278-5846. Available from: https://doi.org/10.1016/j.pnpbp.2020.109951
12. Kępińska, A.P.. Schizophrenia and Influenza at the Centenary of the 1918-1919 Spanish Influenza Pandemic: Mechanisms of Psychosis Risk. Frontiers in Psychiatry. 2020; 11, ISSN 1664-0640. Available from: https://doi.org/10.3389/fpsyt.2020.00072
13. Dietz, A.G.. Glial cells in schizophrenia: a unified hypothesis. The Lancet Psychiatry. 2020; 7(3):272-281, ISSN 2215-0366. Available from: https://doi.org/10.1016/S2215-0366(19)30302-5
14. Wang, C.S.. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell. 2022; 185(1):62-76, ISSN 0092-8674. Available from: https://doi.org/10.1016/j.cell.2021.12.003
15. Sheng, J.A.. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Frontiers in Behavioral Neuroscience. 2021; 14, ISSN 1662-5153. Available from: https://doi.org/10.3389/fnbeh.2020.601939
16. Sabatini, B.L.. Imaging Neurotransmitter and Neuromodulator Dynamics In Vivo with Genetically Encoded Indicators. Neuron. 2020; 108(1):17-32, ISSN 0896-6273. Available from: https://doi.org/10.1016/j.neuron.2020.09.036
17. Ghit, A.. GABA<inf>A</inf> receptors: structure, function, pharmacology, and related disorders. Journal of Genetic Engineering and Biotechnology. 2021; 19(1), ISSN 1687-157X. Available from: https://doi.org/10.1186/s43141-021-00224-0
18. Northoff, G.. All roads lead to the motor cortex: psychomotor mechanisms and their biochemical modulation in psychiatric disorders. Molecular Psychiatry. 2021; 26(1):92-102, ISSN 1359-4184. Available from: https://doi.org/10.1038/s41380-020-0814-5
19. Krueger, R.F.. Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP): II. Externalizing superspectrum. World Psychiatry. 2021; 20(2):171-193, ISSN 1723-8617. Available from: https://doi.org/10.1002/wps.20844
20. Miller, A.. Beyond depression: the expanding role of inflammation in psychiatric disorders. World Psychiatry. 2020; 19(1):108-109, ISSN 1723-8617. Available from: https://doi.org/10.1002/wps.20723
21. Ermakov, E.A.. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. Oxidative Medicine and Cellular Longevity. 2021; 2021, ISSN 1942-0900. Available from: https://doi.org/10.1155/2021/8881770
22. Richetto, J.. Epigenetic Modifications in Schizophrenia and Related Disorders: Molecular Scars of Environmental Exposures and Source of Phenotypic Variability. Biological Psychiatry. 2021; 89(3):215-226, ISSN 0006-3223. Available from: https://doi.org/10.1016/j.biopsych.2020.03.008
23. Hodo, T.W.. Critical Neurotransmitters in the Neuroimmune Network. Frontiers in Immunology. 2020; 11, ISSN 1664-3224. Available from: https://doi.org/10.3389/fimmu.2020.01869
24. Gulsuner, S.. Genetics of schizophrenia in the South African Xhosa. Science. 2020; 367(6477):569-573, ISSN 0036-8075. Available from: https://doi.org/10.1126/science.aay8833
25. Tripathi, M.K.. The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biology. 2020; 34, ISSN 2213-2317. Available from: https://doi.org/10.1016/j.redox.2020.101567
26. Bahrami, S.. Shared Genetic Loci between Body Mass Index and Major Psychiatric Disorders: A Genome-wide Association Study. JAMA Psychiatry. 2020; 77(5):503-512, ISSN 2168-622X. Available from: https://doi.org/10.1001/jamapsychiatry.2019.4188
27. Hwang, W.J.. The role of estrogen receptors and their signaling across psychiatric disorders. International Journal of Molecular Sciences. 2021; 22(1):1-21, ISSN 1661-6596. Available from: https://doi.org/10.3390/ijms22010373
28. Kummer, K.K.. The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain. International Journal of Molecular Sciences. 2020; 21(10), ISSN 1661-6596. Available from: https://doi.org/10.3390/ijms21103440
29. Wołoszynowska-Fraser, M.U.. Vitamin A and Retinoic Acid in Cognition and Cognitive Disease. Annual Review of Nutrition. 2020; 40:247-272, ISSN 0199-9885. Available from: https://doi.org/10.1146/annurev-nutr-122319-034227
30. Aykaç, A.. The Role of the SLC Transporters Protein in the Neurodegenerative Disorders. Clinical Psychopharmacology and Neuroscience. 2020; 18(2):174-187, ISSN 1738-1088. Available from: https://doi.org/10.9758/cpn.2020.18.2.174
31. Speranza, L.. Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control. Cells. 2021; 10(4), ISSN 2073-4409. Available from: https://doi.org/10.3390/cells10040735
32. Sears, S.M.S.. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Experimental Biology and Medicine. 2021; 246(9):1069-1083, ISSN 1535-3702. Available from: https://doi.org/10.1177/1535370221989263
33. Banerjee, S.. Electrochemical Detection of Neurotransmitters. Biosensors. 2020; 10(8), ISSN 2079-6374. Available from: https://doi.org/10.3390/bios10080101
34. Nakamura, Y.. Therapeutic use of extracellular mitochondria in CNS injury and disease. Experimental Neurology. 2020; 324, ISSN 0014-4886. Available from: https://doi.org/10.1016/j.expneurol.2019.113114
35. Weiss, N.. Genetic T-type calcium channelopathies. Journal of Medical Genetics. 2020; 57(1):1-10, ISSN 0022-2593. Available from: https://doi.org/10.1136/jmedgenet-2019-106163
36. Raghu, G.. The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disorders Characterized by Oxidative Stress. Current Neuropharmacology. 2021; 19(8):1202-1224, ISSN 1570-159X. Available from: https://doi.org/10.2174/1570159X19666201230144109
37. Yamada, Y.. Neurobiological Mechanisms of Transcranial Direct Current Stimulation for Psychiatric Disorders; Neurophysiological, Chemical, and Anatomical Considerations. Frontiers in Human Neuroscience. 2021; 15, ISSN 1662-5161. Available from: https://doi.org/10.3389/fnhum.2021.631838
38. Bandelow, B.. Current and novel psychopharmacological drugs for anxiety disorders. Advances in Experimental Medicine and Biology. 2020; 1191:347-365, ISSN 0065-2598. Available from: https://doi.org/10.1007/978-981-32-9705-0_19
39. Teleanu, R.I.. Neurotransmitters—Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. International Journal of Molecular Sciences. 2022; 23(11), ISSN 1661-6596. Available from: https://doi.org/10.3390/ijms23115954
40. Shahsavar, A.. Structural insights into the inhibition of glycine reuptake. Nature. 2021; 591(7851):677-681, ISSN 0028-0836. Available from: https://doi.org/10.1038/s41586-021-03274-z
41. Halverson, T.. Gut microbes in neurocognitive and mental health disorders. Annals of Medicine. 2020; 52(8):423-443, ISSN 0785-3890. Available from: https://doi.org/10.1080/07853890.2020.1808239
42. Cernat, A.. An overview of the detection of serotonin and dopamine with graphene-based sensors. Bioelectrochemistry. 2020; 136, ISSN 1567-5394. Available from: https://doi.org/10.1016/j.bioelechem.2020.107620
43. Stevanovic, M.. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Frontiers in Molecular Neuroscience. 2021; 14, ISSN 1662-5099. Available from: https://doi.org/10.3389/fnmol.2021.654031
44. Vidal, P.M.. The Cross-Talk Between the Dopaminergic and the Immune System Involved in Schizophrenia. Frontiers in Pharmacology. 2020; 11, ISSN 1663-9812. Available from: https://doi.org/10.3389/fphar.2020.00394
45. Eddin, F.B.K.. The principle of nanomaterials based surface plasmon resonance biosensors and its potential for dopamine detection. Molecules. 2020; 25(12), ISSN 1420-3049. Available from: https://doi.org/10.3390/molecules25122769
46. Tanaka, M.. Antidepressant-like effects of kynurenic acid in a modified forced swim test. Pharmacological Reports. 2020; 72(2):449-455, ISSN 2299-5684. Available from: https://doi.org/10.1007/s43440-020-00067-5
47. Jones, G.H.. Inflammatory signaling mechanisms in bipolar disorder. Journal of Biomedical Science. 2021; 28(1), ISSN 1021-7770. Available from: https://doi.org/10.1186/s12929-021-00742-6
48. Jeremic, D.. Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacology and Therapeutics. 2021; 223, ISSN 0163-7258. Available from: https://doi.org/10.1016/j.pharmthera.2021.107808
49. Grinchii, D.. Mechanism of action of atypical antipsychotic drugs in mood disorders. International Journal of Molecular Sciences. 2020; 21(24):1-15, ISSN 1661-6596. Available from: https://doi.org/10.3390/ijms21249532
50. Yoshikawa, T.. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. British Journal of Pharmacology. 2021; 178(4):750-769, ISSN 0007-1188. Available from: https://doi.org/10.1111/bph.15220
51. Gómez-Nieto, R.. Prepulse inhibition of the auditory startle reflex assessment as a hallmark of brainstem sensorimotor gating mechanisms. Brain Sciences. 2020; 10(9):1-15, ISSN 2076-3425. Available from: https://doi.org/10.3390/brainsci10090639
52. Yoon, S.. The role of the oxytocin system in anxiety disorders. Advances in Experimental Medicine and Biology. 2020; 1191:103-120, ISSN 0065-2598. Available from: https://doi.org/10.1007/978-981-32-9705-0_7
53. Pak, C.H.. Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived NRXN1-mutant neurons. Proceedings of the National Academy of Sciences of the United States of America. 2021; 118(22), ISSN 0027-8424. Available from: https://doi.org/10.1073/pnas.2025598118
54. Tarasov, V.V.. Alterations of astrocytes in the context of schizophrenic dementia. Frontiers in Pharmacology. 2020; 10, ISSN 1663-9812. Available from: https://doi.org/10.3389/fphar.2019.01612
55. Ostrowska, K.. Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharmaceutical Journal. 2020; 28(2):220-232, ISSN 1319-0164. Available from: https://doi.org/10.1016/j.jsps.2019.11.025
56. Sato, C.. Polysialylation and disease. Molecular Aspects of Medicine. 2021; 79, ISSN 0098-2997. Available from: https://doi.org/10.1016/j.mam.2020.100892
57. Naveed, M.. Gut-brain axis: A matter of concern in neuropsychiatric disorders…!. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2021; 104, ISSN 0278-5846. Available from: https://doi.org/10.1016/j.pnpbp.2020.110051
58. Scaini, G.. Neurobiology of bipolar disorders: A review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. Brazilian Journal of Psychiatry. 2020; 42(5):536-551, ISSN 1516-4446. Available from: https://doi.org/10.1590/1516-4446-2019-0732

Descargas

Publicado

2024-08-02

Cómo citar

1.
Urquiza - Zavaleta RE, Rodríguez Vega JL, Navarro- Lópeez NA. Neurotransmisores implicados en la fisiopatología de la esquizofrenia. Rev. Hosp. Psiq. Habana [Internet]. 2 de agosto de 2024 [citado 18 de agosto de 2025];21(2). Disponible en: https://revhph.sld.cu/index.php/hph/article/view/466

Número

Sección

Artículo de revisión

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.