Structural Chromosomal Mutations Associated with Susceptibility to Schizophrenia in Cuban Patients

Authors

Keywords:

schizophrenia, chromosome mutations, karyotype

Abstract

Introduction: Schizophrenia is a serious mental disorder that affects approximately 24 million people worldwide, that is, 1 in 300 people. Cytogenetic and molecular studies have revealed a large number of chromosomal mutations in individuals with schizophrenia involving both autosomal and sex chromosomes. The identification of these mutations constitutes a useful tool in the location of genes associated with the origin of this disease.

Objectives: Describe structural chromosomal mutations in individuals with schizophrenia in the Cuban population and describe the type of chromosomal aberrations (balanced or unbalanced) in the patients studied.

Methods: A cross-sectional descriptive study of the case series type was carried out, the sample consisted of 301 individuals diagnosed with schizophrenia. Due to the type of study, the high-resolution lymphocyte culture technique standardized in the Laboratory of the National Center for Medical Genetics of Cuba was used to obtain chromosomes

Results:28 structural mutations were detected (28/301=9.30%), the frequency of balanced structural chromosomal mutations (21/301=6.97%) was higher than the frequency of unbalanced mutations

(7/301=2.32%). Structural chromosomal mutations never previously reported were identified, such as duplications in chromosomes 5, 7 and 10, additions in chromosomes 14 and 21 and translocations between chromosomes 5 and 9.

Conclusions: A better genetic-clinical characterization of schizophrenia in sick individuals was achieved; structural chromosomal mutations described for the first time in the scientific literature, with possible association with schizophrenia in the Cuban population were identified.

Downloads

Download data is not yet available.

Author Biography

Enny Morales Rodríguez, Centro Nacional de Genética Médica. La Habana, Cuba

Licenciada en Ciencias Biológicas, master en Genética Médica, Doctor en Ciencias de la Salud, Profesor e Investigador Titular, Miembro del Consejo Científico del Centro Nacional de Genética Médica.

References

1. Chen X, Li H, Mao Y, Xu X, Lv J, Zhou L, et al. Subtelomeric multiplex ligation-dependent probe amplification as a supplement for rapid prenatal detection of fetal chromosomal aberrations. Molecular cytogenetics. 2014;7(1):1-7.

2. Kraepelin E. Textbook of psychiatry. As abstracted and adapted by. 1907.

3. Evans K, McGrath J, Milns R. Searching for schizophrenia in ancient Greek and Roman literature: a systematic review. Acta Psychiatrica Scandinavica. 2003;107(5):323-30.

4. Gerdes T, Kirchhoff M, Lind AM, Vestergaard Larsen G, Kjaergaard S. Multiplex ligation‐dependent probe amplification (MLPA) in prenatal diagnosis—experience of a large series of rapid testing for aneuploidy of chromosomes 13, 18, 21, X, and Y. Prenatal Diagnosis: Published in Affiliation With the International Society for Prenatal Diagnosis. 2008;28(12):1119-25.

5. Boormans E, Birnie E, Wildschut HI, Schuring-Blom HG, Oepkes D, van Oppen CA, et al. Multiplex ligation-dependent probe amplification versus karyotyping in prenatal diagnosis: the MAKE study. BMC Pregnancy and Childbirth. 2008;8(1):1-5.

6. Chitty LS, Kistler J, Akolekar R, Liddle S, Nicolaides K, Levett L. Multiplex ligation-dependent probe amplification (MLPA): a reliable alternative for fetal chromosome analysis? The Journal of Maternal-Fetal & Neonatal Medicine. 2012;25(8):1383-6.

7. McGowan-Jordan J, Hastings R, Moore S. Re: International system for human cytogenetic or cytogenomic nomenclature (ISCN): some thoughts, by T. Liehr. Cytogenetic and Genome Research. 2021;161(5):225-6.

8. Morales Rodríguez E, Marcheco Teruel B, Caballero Moreno A, Monzón Benítez G, Barrios Martínez A. Alteraciones cromosómicas estructurales en pacientes con esquizofrenia en la población cubana. Rev. Genética Comunitaria 2017, 3 (1).

9. Bogani D, Willoughby C, Davies J, Kaur K, Mirza G, Paudyal A, et al. Dissecting the genetic complexity of human 6p deletion syndromes by using a region-specific, phenotype-driven mouse screen. Proceedings of the National Academy of Sciences. 2005;102(35):12477-82.

10. Sullivan PF, Geschwind DH. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell. 2019;177(1):162-83.

11. Toyota T, Shimizu H, Yamada K, Yoshitsugu K, Meerabux J, Hattori E, et al. Karyotype analysis of 161 unrelated schizophrenics: no increased rates of X chromosome mosaicism or inv (9), using ethnically matched and age-stratified controls. Schizophrenia research. 2001;52(3):171-9.

12. MacIntyre D, Blackwood D, Porteous D, Pickard B, Muir WJ. Chromosomal abnormalities and mental illness. Molecular psychiatry. 2003;8(3):275-87.

13. Kunugi H, Nanko S, Murray R. Complicaciones obstétricas y esquizofrenia: subdesarrollo prenatal y posterior deterioro del neurodesarrollo. The British Journal of Psychiatry, 2001; 178(S40), S25-S29. doi:10.1192/bjp.178.40.s25

14. Knight HM, Pickard BS, Maclean A, Malloy MP, Soares DC, McRae AF, et al. A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. The American Journal of Human Genetics. 2009;85(6):833-46.

15. Rodríguez EM, Terue BM, Jiménez ZR, Torres MS, Rosado LAM. Identificación de alteraciones cromosómicas en pacientes con esquizofrenia en la población cubana/Identification of chromosomal aberrations in Cuban patients with schizophrenia. Rev Hosp Psiquiátrico de la Habana. 2013;10(1).

16. Gardner RM, Sutherland GR, Shaffer LG. Chromosome abnormalities and genetic counseling: OUP USA; 2011.

17. Toledo Navarrete AE. Estrategias metodológicas para potenciar el aprendizaje de estudiantes con mosaicismo cromosómico. Estudio de caso 2020.

18. Bassett AS. Chromosome 5 and schizophrenia: implications for genetic linkage studies. Schizophrenia bulletin. 1989;15(3):393-402.

19. Pickard BS, Malloy P, Hampson M. Molecular cytogenetic characterisation of chromosome abnormalities found in two patients co-morbid for schizophrenia and mild learning disability (mental retardation). Schizophrenia Bullet. 2008;12(4).

20. Pimm J, McQuillin A, Thirumalai S, Lawrence J, Quested D, Bass N, et al. The Epsin 4 gene on chromosome 5q, which encodes the clathrin-associated protein enthoprotin, is involved in the genetic susceptibility to schizophrenia. The American Journal of Human Genetics. 2005;76(5):902-7.

21. Axelsson R, Wahlström J. Chromosome aberrations in patients with paranoid psychosis. Hereditas. 1984;100(1):29-31.

22. DeLisi LE, Friedrich U, Wahlstrom J, Boccio-Smith A, Forsman A, Eklund K, et al. Schizophrenia and sex chromosome anomalies. Schizophrenia Bulletin. 1994;20(3):495-505.

23. Prasad S, Semwal P, Deshpande S, Bhatia T, LNimgaonkar V, Thelma B. Molecular genetics of schizophrenia: past, present and future. Journal of Biosciences. 2002;27(1):35-52.

24. Zhang F, Sham PC, Fan H, Xu Y, Huang X, So H, et al. An association study of ADSS gene polymorphisms with schizophrenia. Behavioral and Brain Functions. 2008;4(1):1-6.

25. Camozzato AL, Godinho C, Kochhann R, Massochini G, Chaves ML. Validity of the Brazilian version of the Neuropsychiatric Inventory Questionnaire (NPI-Q). Arquivos de Neuro-Psiquiatria. 2015;73:41-5.

26. Gochman P, Miller R, Rapoport JL. Childhood-onset schizophrenia: the challenge of diagnosis. Current psychiatry reports. 2011;13(5):321-2.

27. Harel T, Lupski J. Genomic disorders 20 years on—mechanisms for clinical manifestations. Clinical genetics. 2018;93(3):439-49.

28. Miranda A, Ospina J, Berrío GB, Calle JJ, García L, Ruiz A. Búsqueda de asociación entre el gen RELN y la susceptibilidad a esquizofrenia en núcleos familiares antioqueños. Iatreia. 2001;14(4-S):ág. 314-ág. .

29. Zhang Z, Chen GA logical relationship for schizophrenia, bipolar, and major depressive disorder. Part 1: Evidence from chromosome 1 high density association screen. Journal of Comparative Neurology. 2020;528(15):2620-35.

30. Fulginiti V. Testing the network hypothesis for schizophrenia and autism spectrum disorder using whole exome sequencing data: McGill University (Canada); 2018.

31. Sánchez H, Ochoa Madrigal MG. Espectro de la esquizofrenia en niños y adolescentes. Revista de la Facultad de Medicina (México). 2019;62(4):9-23.

32. Rees E, Han J, Morgan J, Carrera N, Escott-Price V, Pocklington AJ, et al. De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nature neuroscience. 2020;23(2):179-84.

Published

2023-07-24

How to Cite

1.
Morales Rodríguez E. Structural Chromosomal Mutations Associated with Susceptibility to Schizophrenia in Cuban Patients. Rev. Hosp. Psiq. Hab. [Internet]. 2023 Jul. 24 [cited 2026 Jan. 13];20(2). Available from: https://revhph.sld.cu/index.php/hph/article/view/349

Issue

Section

Artículo original