Chromosomal variants in individuals with schizophrenia in the Cuban population
Keywords:
Schizophrenia, Cytogenetics, Chromosomal VariantsAbstract
Introduction: Schizophrenia is a mental disorder that affects 1% of the general population and has a heritability of 80%. The study of this disease supports the evidence of genetic causes, which involve the interaction of multiple genes, which represents a complex form of inheritance. The identification of chromosomal regions and even chromosomal variants with a possible association with the disease continue to be important tools for the search of susceptibility genes that code primarily for proteins involved in different brain functions, so that genetic research on schizophrenia have notably contributed to the determination of its pathophysiology. The aim of this study was to identify chromosomal variants with possible association with schizophrenia in individuals of the Cuban population.
Methods: A cross-sectional descriptive study of the case series type was carried out, the sample consisted of 301 individuals diagnosed with schizophrenia. Due to the type of study, the standardized high-resolution lymphocyte culture technique was used at the Laboratory of the National Center for Medical Genetics of Cuba.
Results: Thirty-two patients with chromosomal variants were identified, one corresponding to the pericentric inversion of chromosome 1 (inv(1)(p12q21), four patients with variants in the acrocentric chromosomes specifically of chromosomes 13 and 14, one individual with a variant in chromosome 16 and 26 individuals with chromosome 9 heteromorphisms.
Conclusions: Identification of polymorphic variants provides a new approach for research aimed at the search for cytogenetic markers that allow delineating genetic susceptibility in families of patients with schizophrenia in the Cuban population.
Downloads
References
2. Brian Kirkpatrick. Schizophrenia. Rev Psiquiatric Salud Ment. 2019;2(3):105-7.
3. Harrison PJ, Owen MJ. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet. 2005;361(9355):417–9.
4. Owen MJ, Craddock N, O’Donovan MC. Schizophrenia: genes at last? Trends in Genetics. 2007;21(9):518-25.
5. Heinrichs RW. Historical origins of schizophrenia: two early madmen and their illness. Hist Behav Sci. 2006;4(39):349–63.
6. Ramos-Loyo J, Mora-Reynoso L, Sánchez-Loyo LM, Medina-Hernández V. Sex Differences in Facial, Prosodic, and Social Context Emotional Recognition in Early-Onset Schizophrenia. Schizophrenia Research and Treatment. 2012;12:584-612. PMCID: PMC3420677
7. Kumura S, Shaw M, Merka P, Nakayama E, Augustin R. Childhood-onset schizophrenia: research update. Canadian Journal of Psychiatry. 2007;46(10):923–30.
8. Evans K, McGrath J. Searching for schizophrenia in ancient Greek and Roman literature: a systematic review. Acta Psychiatrica Scandanavica. 2003;107(5):323–30.
9. Sánchez Espeinosa MP, Corredor Rozo ZL, Forero Castro RM Descripción molecular de 26 genes asociados a la esquizofrenia. Rev Ciencia en Desarrollo. 2010 [acceso: 13/12/2021]; 3(1). Disponible en: https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/268
10. Knight HM, Pickard BS, Maclean A, Malloy MP, Soares DC, McRae AF.et al. A Cytogenetic Abnormality and Rare Coding Variants Identify ABCA13 as a Candidate Gene in Schizophrenia, Bipolar Disorder, and Depression The American Journal of Human Genetics. 2019;85:833-46.
11. Gardner RJMcK, Sutherland GR. Chromosome Abnormalities and Genetic Counseling. 4 Ed. Oxford University Press Inc.; 2019:392-432.
12. First Michael B. Manual diagnóstico y estadístico de los trastornos mentales. 4.ª Ed. Editorial MASSON; 2009.
13. World Health Organization, SCAN: Schedules for Clinical Assessment in Neuropsychiatry Version 2.1 Geneva, Switzerland Psychiatric Publishers International/American Psychiatric Press Inc 1994-2020
14. World Medical Association. WMA Declaration of Helsinki-ethical principles for medical research involving human subjects.; 2013. [acceso: 14/8/2013]. Disponible en: http://www.wma.net/en/30publications/10policies/b3/
15. Shaffer LG, Tommerup N. An International System for Human Cytogenetic Nomenclature: Recommendations of the International Standing Committee on Human Cytogenetic Nomenclature. Karger Publishers; 2020.
16. Prasad S, Semwal P, Deshpande S, Bhatia T, Nimgaonkar VL, Thelma BK. Molecular genetics of schizophrenia: past, present and future. Journal of Bioscience. 2018;24S1:35-52.
17. Kalz L, Kalz-Füller B, Hegde S, Schwanitz G. Polymorphisms of Q-band heterochromatin: qualitative and quantitative analyses of features in 3 ethnic groups (Europeans, Indians, and Turks). Int J Hum genet. 2012;5(2):153-63.
18. Forero Castro RM, Cortés Duque C, Sánchez Espinosa MP, Corredor Rozo ZL. Anormalidades cromosómicas y esquizofrenia. Revista Colombiana de Psiquiatría. 2009 [acceso: 13/12/2021]; 38(3):534-54. Disponible en: https://www.redalyc.org/articulo.oa?id=80615422011
19. Klar S. Lessons learned from studies of fission yeast mating-type switching and silencing. Ann. Rev. Genet. 2007;41:213–36.
20. Gardner RJMcK, Sutherland GR. Chromosome Abnormalities and Genetic Counseling. 4ed. Oxford University Press Inc.; 2012. p. 392-432.
21. Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, et al. DNA sequence and analysisof human chromosome 9. Nature. 2004;429:369-74.
22. Corominas A, Laiseca J, Serale C. Matilla Méndez L. El polimorfismo 9ph óinv (9) tendría un rol significativo en pacientes con problemas reproductivos. Revista Bioanálisis. 2020;102:14-20.
23. Prasad S, Semwal P, Deshpande S, Bhatia T, Nimgaonkar VL, Thelma BK. Molecular genetics of schizophrenia: past, present and future. Journal of Bioscience. 2012;24(10):52-35.
24. Avramopoulos D. Recent Advances in the Genetics of Schizophrenia. Mol Neuropsychiatry. 2018;4:35–51.
25. Toyota T, Shimizu H, Yamada K, Yoshitsugu K, Meerabux J, Hattori E, et al. Karyotype analysis of 161 unrelated schizophrenics: no increased rates of X chromosome mosaicism or inv(9), using ethnically matched and age stratified controls. Schizophr Res. 2004;52(3):171-9.
26. Kunugi H, Lee KB, Nanko S. Cytogenetic findings in 250 schizophrenics: evidence confirming an excess of the X chromosome aneuploidies and pericentric inversion of chromosome 9. Schizophr Res. 2000;40(1):7-43.
27. Yamada K. Population studies of inv(9) chromosomes in 4,300 Japanese: incidence, sex difference and clinical significance. AM J Hum Genet. 1999;37(4):293-301.
28. Axelsson R, Wahistrom J. Chromosome aberrations in patients with paranoid psychosis. Hereditas. 2018;100(1):29-31.
29. Demirhan O, Tastemir D. Chromosome aberrations in schizophrenia population. Schizophr Res. 2003; 65(1):1-7.
30. Harel T, Lupski JR. Genomic disorders 20 years on—mechanisms for clinical manifestations. Clinical Genetics. 2018;93(3): 439-49. DOI: 10.1111/cge.13146
31. Lupski JR. Molecular Mechanisms for Genomic and Chromosomal Rearrangements. The American Journal of Human Genetics. 2019;104:391–406.
32. Madon PF, Athalye AS, Parikh FR. Polymorphic variants on chromosomes probably play a significant role in infertility. Reprod Biomed Online. 2005;11(6):726–32. DOI: 10.1016/s1472-6483(10)61691-4
33. Wyandt HE, Tonk VS. Atlas of human chromosome heteromorphisms. Ed. Kluwer. Academic Publishers; 2019.