La enfermedad de Alzheimer desde una perspectiva cronobiológica
Rev. Hosp. Psiq. Hab. Volumen 21 | Nº 2 | Año 2024
Este material es publicado según los términos de la Licencia Creative Commons Atribución–NoComercial 4.0. Se permite el uso, distribución
y reproducción no comerciales y sin restricciones en cualquier medio, siempre que sea debidamente citada la fuente primaria de publicación.
5. Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian
rhythms. Nat Rev Mol Cell Biol. 2020 Feb;21(2):67-84. doi: 10.1038/s41580-019-0179-2.
6. Dollish HK, Tsyglakova M, McClung CA. Circadian rhythms and mood disorders: Time to see the
light. Neuron. 2024 Jan 3;112(1):25-40. doi: 10.1016/j.neuron.2023.09.023.
7. Fifel K, Videnovic A. Circadian alterations in patients with neurodegenerative diseases:
Neuropathological basis of underlying network mechanisms. Neurobiol Dis. 2020 Oct;144:105029.
doi: 10.1016/j.nbd.2020.
8. Song H, Moon M, Choe HK, Han DH, Jang C, Kim A, Cho S, Kim K, Mook-Jung I. Abeta-induced
degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer’s disease. Mol
Neurodegener. 2015;10:13. https://doi.org/10.1186/s13024-015-0007-x.
9. Furtado A, Astaburuaga R, Costa A, Duarte AC, Gonçalves I, Cipolla-Neto J. The rhythmicity of
clock genes is disrupted in the choroid plexus of the APP/PS1 mouse model of Alzheimer's disease.
Journal of Alzheimer's Disease. 2020; 77, 795–806. doi: 10.3233/JAD-200331.
10. Niu L, Zhang F, Xu X, Yang Y, Li S, Liu H, Le W. Chronic sleep deprivation altered the expression
of circadian clock genes and aggravated Alzheimer's disease neuropathology. Brain Pathology.
2022; 32, e13028. doi: 10.1111/bpa.13028.
11. Kondratova AA, Dubrovsky YV, Antoch MP, Kondratov RV. Circadian clock proteins control
adaptation to novel environment and memory formation. Aging. 2010;2:285–97.
https://doi.org/10.18632/aging. 100142.
12. Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, Lee Y, Roh JH, Ortiz-Gonzalez X, Dearborn JT,
Culver JP, et al. Circadian clock proteins regulate neuronal redox homeostasis and
neurodegeneration. J Clin Invest. 2013;123:5389–400. https://doi.org/10.1172/JCI70317.
13. Hulme B, Didikoglu A, Bradburn S, Robinson A, Canal M, Payton A, Pendleton, Murgatroyd C.
Epigenetic regulation of BMAL1 with sleep disturbances and Alzheimer's disease. Journal of
Alzheimer's Disease; 2020; 77, 1783–1792. doi: 10.3233/JAD-200634.
14. Yoo ID, Park MW, Cha HW, Yoon S, Boonpraman N, Yi SS, Moon JS. Elevated CLOCK and
BMAL1 contribute to the impairment of aerobic glycolysis from astrocytes in Alzheimer's disease.
International Journal of Molecular Sciences. 2020; 21, 7862. doi: 10.3390/ijms21217862.
15. Bessi V, Balestrini J, Bagnoli S, Mazzeo S, Giacomucci G, Padiglioni S. Influence of ApoE
Genotype and Clock T3111C Interaction with Cardiovascular Risk Factors on the Progression to
Alzheimer’s Disease in Subjective Cognitive Decline and Mild Cognitive Impairment Patients. J.
Pers. Med. 2020; 10, 45. doi: 10.3390/jpm10020045.
16. Stevanovic K, Yunus A, Joly-Amado A, Gordon M, Morgan D, Gulick D, Gamsby J. Disruption
of normal circadian clock function in a mouse model of tauopathy. Exp Neurol. 2017;294:58–67.
https://doi.org/10. 1016/j.expneurol.2017.04.015.
17. Lananna BV, McKee CA, King MW, Del-Aguila JL, Dimitry JM, Farias FHG, et al. Chi3l1/YKL-
40 is controlled by the astrocyte circadian clock and regulates neuroinfammation and Alzheimer’s
disease pathogenesis. Sci Transl Med. 2020;12. doi: 10.1126/scitranslmed.aax3519.