Este material es publicado según los términos de la Licencia Creative Commons Atribución–NoComercial 4.0. Se permite el uso,
distribución y reproducción no comerciales y sin restricciones en cualquier medio, siempre que sea debidamente citada la fuente primaria
de publicación.
5. Memar MY, Ghotaslou R, Samiei M, Adibkia K. Antimicrobial use of reactive oxygen therapy:
current insights Infection and Drug Resistance 2018; 11 567–576.
6. Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015; 4, 180–183.
7. Santos S. Coronavirus (Covmediid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis,
aging, inflammation, and mortality Inflammation Research. 2020; 69:1077–1085
https://doi.org/10.1007/s00011-020-01389-z
8. Van der Bliek AM, Sedensky MM, Morgan PG. Cell biology of the mitochondrion. Genetics. 2017;
207:843–71. https ://doi.org/10.1534/genet ics.117.30026 2.
9. Wimalawansa SJ, Vitamin D deficiency: Efects on oxidative stress, epigenetics, gene regulation, and
aging.Biology 2019, 8, 30.
10. Zhang L, Wang X, Cueto R, Effia C, Zhang Y, Tand H, et al. Biochemical basis and metabolic
interplay of redox regulation. RedoxBiology.2019; 6: 101284,
https://doi.org/10.1016/j.redox.2019.101284.
11. Fakouri NB, Hansen TL, Desler C, Anugula S, Rasmussen, LJ. From powerhouse to perpetrator—
Mitochondria in health and disease. Biology. 2019; 8: 35.
12. Fridovich I. Fundamental aspects of Reactive Oxygen Species, or What's the Matter with Oxygen?
Annals of the New York Academy of Sciences Volume 893, Issue 1: OXIDATIVE/ENERGY
METABOLISM IN NEURODEGENERATIVE DISORDERS Nov 1999 Pages xi-xiii, 1-439
page IRWIN FRIDOVICH https://doi.org/10.1111/j.1749-6632.1999.tb07814.xopen_in_new
Publisher John Wiley & Sons, LtdISSN0077-8923eISSN1749-6632 Online 6 February 2006;
Pages13 – 18.
13. Naviaux RK. Incomplete healing as a cause of aging: The role of mitochondria and the cell danger
response. Biology 2019; 8: 27.
14. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer
disease. Nat Rev Neurosci. 2019; 20(3):148–60.
15. Barcelos PD, Haas RH. Coq10 and aging. Biology 2019, 8, 28.
16. Sang S, Pan X, Chen Z, Zeng F, Pan S, Liu H, et al. Thiamine diphosphate reduction strongly
correlates with brain glucose hypometabolism in Alzheimer’s disease, whereas amyloid deposition
does not. Alzheimers Res Ther. 2018; 10(1):26.
17. Lopez J, Le Douce A, Logan AM, James G, Bonvento MP, Murphy A. et al. Complex I assembly
into super-complexes determines differential mitochondrial ROS production in neurons and
astrocytes, Proc. Natl. Acad. Sci. U.S.A. 2016; 113:13063–13068.
18. Hekimi S, Wang Noe A. Mitochondrial ROS and the effectors of the intrinsic apoptotic pathway in
aging cells: the discerning killers!. Front. Genet. 2016; 7: 161.
19. Jones PD, Sies H. The redox code, Antioxidants Redox Signal. 2015; 23: 734–746.
20. Vida I, Martinez de Toda A, Garrido E, Carro JA, Molina S, de la Fuente M. Impairment of several
immune functions and redox state in blood cells of Alzheimer's disease patients. Relevant role of
neutrophils in oxidative stress. Frontiers in Immunology.2018 vol. 8: p. 1974-84.